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Abstract—This paper describes our research and development
toward a precise, unambiguous, and information-dense knowl-
edge graph of cybersecurity countermeasures. In project work
for our sponsors we have repeatedly encountered the need for
a model that can identify and precisely specify cybersecurity
countermeasure components and capabilities. Furthermore, it
is necessary that practitioners know not only what threats a
capability claims to address, but, specifically how those threats
are addressed from an engineering perspective, and under
what circumstances the solution would work. This knowledge
is essential to estimate operational applicability, vulnerabilities,
and develop enterprise solutions comprising multiple capabilities.
To address this recurring need in the near-term, we created
D3FEND, a framework in which we encode a countermeasure
knowledge base, but more specifically, a knowledge graph. The
graph contains semantically rigorous types and relations that
define both the key concepts in the cybersecurity countermeasure
domain and the relations necessary to link those concepts to
each other. We ground each of the concepts and relations to
particular references in the cybersecurity literature. Numerous
sources of research and development literature were analyzed,
including a targeted sample of over 500 countermeasure patents
drawn from the U.S. Patent Office corpus over the years 2001 to
2018. To demonstrate the value of this approach in practice, we
describe how the graph supports queries that can inferentially
map cybersecurity countermeasures to offensive TTPs. As part
of a larger vision, we outline future D3FEND work to leverage
the linked open data available on research literature and apply
machine learning, in particular semi-supervised methods, to assist
in maintaining the D3FEND knowledge graph over time. Finally,
we welcome community feedback on D3FEND.

Index Terms—countermeasures, cybersecurity, cyber defense,
intrusion detection, knowledge acquisition, knowledge engineer-
ing, knowledge graph, linked data, network security, ontology,
procedures, tactics, techniques, TTPs

I. INTRODUCTION

The cybersecurity defense market comprises more than
5,000 companies [1]. More than 6,000 cybersecurity patent
applications were filed in 2018 (Figure 1). Cyber defense
teams also implement their own countermeasures to address
what vendor products do not. These custom capabilities are
often shared through open-source software communities. In a
cycle of adaptation, countermeasures are rapidly developed in
response to rapidly changing offensive techniques.
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A cybersecurity countermeasure is any process or tech-
nology developed to negate or offset offensive cyber activi-
ties. It is not enough to understand what a countermeasure
does—what it detects, what it prevents. We must understand
how it does it. A security architect must understand their
organization’s countermeasures—precisely what they do, how
they do it, and their limitations—if countermeasures are to
be effectively employed. A red team conducting an exercise
to identify security gaps must plan their engagement with
expert knowledge of a countermeasure’s functionality if they
are to evade it. A venture capitalist considering a cybersecurity
startup must understand what problem it is trying to solve,
whether and how it has been solved before, and why the
proposed solution is better or novel.

Existing cybersecurity knowledge bases do not explain with
enough fidelity and structure what these countermeasures do
to meet these needs, we reviewed prominent knowledge bases
discussed in section II. Furthermore, no framework or model
exists that has had its knowledge content sustained at the rate
of change in the cybersecurity space. D3FEND™ establishes
a fine-grained semantic model of countermeasures, their prop-
erties, relationships, and history of development. We have also
defined a semantic model of a portion of MITRE’s ATT&CK®

framework [15] to represent the offensive TTPs with the same
common, standardized semantic language (OWL DL). This
enables us to incorporate ATT&CK by mapping its concepts
directly to D3FEND’s model of defensive techniques and ar-
tifacts. D3FEND provides a methodology for curating content
into new knowledge and tying it to its source information in
meaningful ways. Finally, this paper provides a research road
map for harvesting and analyzing content at the industry’s
pace, using and extending the promising human language
technologies and semi-supervised learning.

D3FEND’s longer-term goals are to (1) create a sustain-
able knowledge framework for characterizing and relating
cybersecurity countermeasure technology; and (2) accelerate
knowledge discovery and acquisition efforts required to keep
pace with technological changes in the cyber domain. The
D3FEND knowledge graph we have constructed can be di-
rectly embedded within the much larger web of datasets
available within the Linked Open Data Cloud [41]. These
will be used to connect our knowledge to research literature,
organizations, authors, inventors, and investors. We believe



the representation chosen also provides a strong foundation
for research furthering automation, including machine-learning
approaches.

This paper explains how we collected and analyzed data to
produce the initial version of the model. In the following sec-
tions we discuss related work, our methodology, the resulting
knowledge graph of countermeasure techniques, and finally
our roadmap for future work.

II. RELATED WORK

Related prior work includes early cybersecurity standards
and formats, government and commercial cybersecurity threat
frameworks and knowledge bases, commercial product tax-
onomies, and formal information modeling in cybersecurity
and other domains.

A. MITRE-initiated Cybersecurity Standards and Formats

Over the past two decades, MITRE has developed standard
languages and formats to capture cybersecurity information:
Common Vulnerabilities and Exposures (CVE®) [2], Common
Weakness Enumeration (CWE™) [3], Open Vulnerability and
Assessment Language (OVAL®) [4], Common Platform Enu-
meration (CPE™) [5], Common Event Expression (CEE™)
[6], Common Attack Pattern Enumeration and Classification
(CAPEC™) [7], Malware Attribute Enumeration and Charac-
terization (MAEC™) [8], and Cyber Observables (CybOX™)
[9] languages. These shared vocabularies and disambiguating
references are useful for cybersecurity practitioners to record
and exchange cyber threat knowledge. CybOX, MAEC, and
CAPEC introduced more taxonomic and relational informa-
tion; their elements have been incorporated into the Structured
Threat Information eXpression (STIX™) OASIS™ standard
for Cyber Threat Intelligence (CTI). Together these provide
references on which we build a detailed, explicit model of
countermeasures.

B. Cybersecurity Threat Frameworks

The National Institute of Standards and Technology (NIST)
created and updates the Cybersecurity Framework, which
provides security guidance for organizations to align their
cybersecurity activities to manage their cybersecurity risk
around an Identify-Protect-Detect-Respond-Recover paradigm
[10]. This paradigm is broader than the kill-chain models we
discuss next, but it is focused on activity and organization
rather than engineering or technology. NIST also maintains
the National Vulnerability Database, the U.S. government
repository of standards-based vulnerability management data
for security controls enumerated in NIST 800-53 [11]. NIST
maps these relevant security controls to the activities defined
in the Cybersecurity Framework.

Kill-chain oriented and derived threat models have proved
popular and effective. New models like D3FEND must relate
to these to ensure rapid uptake by the cyber community and
easy integration with existing resources. The U.S. Department
of Defense Cyber Analysis and Review and U.S. Department
of Homeland Security Cybersecurity Architecture Review

(.govCAR) frameworks serve as threat-based tools for high-
level characterization of cyber threats and mitigations, and a
means to identify gaps in cyber portfolios and architectures
[12]. The Office of the Director of National Intelligence has
created the Cyber Threat Framework to serve as a shared
lexicon to characterize and categorize cyber threat events
[13]. The National Security Agency’s Technical Cyber Threat
Framework added extensive technical detail [14]. MITRE’s
ATT&CK has influenced and been influenced by these frame-
works.

C. ATT&CK

In “Finding Cyber Threats with ATT&CK-Based Analyt-
ics,” MITRE created an analytic development methodology
focused on detecting post-compromise adversary behaviors
[15]. This revolutionized the language security practitioners
use to discuss their work. Vendors began to describe what
specific adversary behaviors their products were able to detect,
prevent, or monitor. ATT&CK primarily modeled adversary
behavior via offensive techniques organized by the tactical
objectives they support. ATT&CK has since amassed an online
knowledge base of threat actor techniques [17].

ATT&CK™ knowledge (also encoded via STIX) is an
especially critical counterpart to D3FEND. D3FEND focuses
on countermeasures. The two can be related as explained in
section IV-E.

The Cyber Analytics Repository (CAR) was a key product
of MITRE’s ATT&CK work. CAR identifies objects related
to key operating system and processing events [18] with its
CAR Data Model, it also catalogs MITRE developed analytics
and maps them to specific ATT&CK techniques they were
designed to detect. The initial D3FEND release incorporates
the CAR analytics developed, but whereas CAR modeled data
from endpoint telemetry software and the associated analytics
from a Security Operations Center Operator’s perspective,
D3FEND models the countermeasure space from a hard-
ware or software engineer’s perspective. Therefore, D3FEND’s
scope is limited only by the scope of the cybersecurity
technology space.

D. Commercial Product Taxonomies

Commercial product taxonomies tend to organize by form-
factor or intended buyer rather than function. This is useful
for understanding which vendors might be relevant but does
not explain in enough detail how the products work or what
they do. However, there are implicit sets of features or func-
tions that each grouping represents. Cybersecurity marketing
vocabulary changes at such a pace that analyst firms produce
new taxonomies each year despite only modest changes in the
underlying technical functionality [19].

Patent systems also provide taxonomies of technological
innovation and assign one or more of these codes to individ-
ual patents. The International Patent Classification system of
70,000 codes, and its extension, the Cooperative Patent Clas-
sification system, are used to curate patents and are managed
by the European and U.S. patent offices. In the cybersecurity



domain, the categories are often broad and only taxonomical;
they do not describe key attributes of the technologies detailed
in the patents.

E. Formal Modeling of Cybersecurity Domain Knowledge

There have been many efforts to model the cybersecurity
domain formally and create knowledge representations for ex-
change and shared understanding. In 2007, Herzog, Shamehri,
and Duma created a detailed model of information security,
including threat, asset, and countermeasure classes and rela-
tionships among them [20]. Fenz, Pruckner, and Manutscheri
built on this by creating guidelines for mapping information
security knowledge from one standard to a more formal secu-
rity model [21]. Wang and Guo created a formal knowledge
model to capture key relationships between vulnerabilities,
products, countermeasures, and actors—incorporating CVE,
the Common Vulnerability Scoring System, CWE, CPE, and
CAPEC—to describe patterns of threats and vulnerability
management to make inferences and assist users in decision
making [22].

In 2012, MITRE reported on a trade study performed
with the goal of creating a general cyber knowledge model
and method for extending its core over a series of iterative
improvements [23]. This team focused their initial work on
building a model from the MAEC language and prior malware
conceptual models of Swimmer, which were developed for the
purpose of data exchange between security software products.
From this, Obrst et al provide a vision for a much broader
cyber knowledge architecture and provide a useful survey
of cyber-related knowledge representations and standards to
contextualize their work and the architecture.

Oltramari et al. created a basic architecture with the key
elements and interactions to support situational awareness
in the cybersecurity domain and then provided a modeling
example using their approach [24]. Salem et al. created the
TAPIO tool, which extracts operational data and integrates data
from numerous sources into a knowledge graph and enables
real-time exploration of the causes and effects of cyber events
[25].

Syed et al. created the Unified Cybersecurity Ontology
(UCO) model by integrating several existing knowledge
schemas and standards into a common model for the cyber-
security domain; like Oltramari et al, their model supports
cyber situational-awareness scenarios [26]. In 2019, the Cyber-
investigation Analysis Standard Expression (CASE) commu-
nity was formed to coordinate a community-developed spec-
ification language to “serve the broadest range of interests in
cyber-investigation domains including: digital forensic science,
incident response, counter-terrorism, criminal justice, forensic
intelligence, and situational awareness.” CASE aligns with and
extends the UCO.

F. Successes Using Knowledge Graphs and Linked Data

Recent advances in knowledge modeling and linked data
technology have enabled its adoption in several domains. The
technology has proven fundamental to the medical, biological

sciences, and bioinformatics communities in cataloging and
deeply understanding complex patterns in medical datasets
and genomes. Scientists can now rapidly share knowledge
and collaborate on complex chemical and protein interactions.
The Unified Medical Language System [27] has integrated
213 medical vocabularies [28]. Bioinformatics researchers
can leverage and tie together knowledge contained in The
European Molecular Biology Laboratory and European Bioin-
formatics Institute’s open data resources and The Universal
Protein Resource, which contains protein sequence and anno-
tation data.

The Schema.org vocabulary [29] is an open data community
founded by Google, Microsoft, Yahoo, and Yandex. The
schema has been developed through a community process.
Schema.org builds on semantic web concepts and facilitates
data exchanges and a shared understanding between sites
choosing to share structured social data and aggregators of that
social data. Google uses schema.org types for its Knowledge
Graph Search API [30]. Thomson Reuters is investing in this
technology as well, creating and spinning off a knowledge
graph group for financial data [31] and news content.

Immediately relevant to the D3FEND knowledge graph and
methodology are pre-existing open linked data resources. We
see opportunities to rapidly integrate pertinent open linked data
readily available, including patent data (and patent coding sys-
tems), authors, researchers, inventors, and organizations. We
believe D3FEND may be enhanced by using and referencing
these open linked datasets with standards-based linked data
technologies.

III. METHODOLOGY

A. Frameworks, Models, and Knowledge Graphs

There are three key information organization approaches we
use to create D3FEND. A conceptual framework which “ex-
plains, either graphically or in narrative form, the main things
to be studied—the key factors, constructs, or variables—and
the presumed relationships among them” [32]. A domain
knowledge model which “is used to reduce conceptual and
terminological confusion” and foster communication, reusabil-
ity, and cooperation [33]. Finally, a knowledge graph which
provides a flexible representation of knowledge and enables
complex machine reasoning about the domain.

To support the recurring need for effective and clear coun-
termeasure capability specifications, we aspire to (1) provide a
conceptual framework that incorporates a domain knowledge
model of the cyber countermeasure domain, (2) populate the
framework and model to complete a knowledge graph, and (3)
relate countermeasures to the ATT&CK framework’s offensive
counterparts and to the larger domain space of structured cyber
knowledge.

D3FEND models core countermeasure functionality and the
knowledge relationships necessary to effectively understand
and contextualize that functionality. Countermeasure technolo-
gies perform many functions with their software or hardware
components. Some functions directly counter adversary behav-
ior. Others are more administrative in nature and supportive



Fig. 1. Cybersecurity Patent Applications 2001-2018

of the core countermeasure functionality and are not the focus
of D3FEND.

D3FEND is primarily concerned with abstract and generic
semantics versus vendor specific terminology or technical jar-
gon. However, analysis of technical jargon is usually required
to select effective semantics—and in some cases create or
define useful new semantics. For example, for D3FEND we
first included an abstract definition of a Kernel instead of
the Microsoft terminology: “Windows Kernel” or “Windows
NT Kernel”, thereby enabling our Kernel concept to apply to
the “Linux Kernel” as well. When needed, D3FEND users
will be able to extend this with more specific definitions of
kernel types by subclassing specific OS kernels and also by
compositions of their parts (e.g, ”Kernel Module” elements).

B. Data Sources

The data used to build D3FEND underpins our new ap-
proach to systematically understanding cybersecurity counter-
measures. The research team developed the model directly
from the research claims in the literature in a bottom-up
fashion, linking each countermeasure through specific citations
to the literature and integrating those into higher-level abstrac-
tions. We discuss patents, existing knowledge bases, and other
data sources.

1) Patents: Inventors file thousands of patent applications
each year for technologies and methods for defensive cyber-
security techniques. We downloaded all U.S. Patent Office
filings from 2001 to January 2019. A key phrase search
against this corpus1 shows an ever-increasing publishing rate
on cybersecurity patents in Figure 1.

The patent corpus was our initial focus for multiple rea-
sons. There is strong motivation for inventors, investors, and
organizations to describe and distinguish how their cyberse-
curity technologies work in patents. This due to the various
protections patents provide for intellectual property owners. It
is also a highly curated corpus with category codes, citations,
and an official legally-authoritative assessment of the novelty
of their claims. In our experience, vendor white papers and

1Apache Solr search terms: ”information assurance” ”cyber security” ”cy-
bersecurity” ”infosec” ”information security” ”network security” ”computer
security” ”computer network defense” ”network defense” ”malware” ”com-
puter hacking” ”computer virus” ”data exfiltration” ”cyber warfare” ”infor-
mation warfare” ”intrusion detection” ”intrusion prevention” ”indicators of
compromise” ”security information events” ”cryptographic” ”cryptography”

Fig. 2. Example Intellectual Property Development Network

marketing material do not sufficiently explain how the tech-
nologies work at an engineering level, nor do they do so in
as uniform a manner as patents. To date, there appears to be
no comprehensive public analysis of the cybersecurity patent
corpus for the purpose of developing a knowledge graph of
cyber countermeasures.

This corpus, while useful, has numerous issues that need to
be understood when using it for our purpose. In some cases,
the corpus is adversarial. For example, in academic papers,
the citations tend to have high fidelity because researchers
are incentivized to accurately represent prior scientific knowl-
edge. Patents also have citations and prior art enumerations.
However, these are often selected to bolster the case that the
new patent is truly novel, useful, and non-obvious for business
purposes. This is done without the peer review process used
in academia.

Forty percent of U.S. patented inventions are not used.
About half of these are patents meant to block competitors or
to be used as bargaining chips in inter-firm negotiations [36].
Our study catalogs all cyber-defense approaches, whether yet
practiced or not; use of the D3FEND knowledge graph may
identify an unpracticed approach and encourage innovation
and productization in that category. Furthermore, because our
survey focuses on recent inventions in an emergent field, the
“not used” distinction is ephemeral in many instances.

2) Existing Knowledge Bases: We analyzed the MITRE
Cyber Analytic Repository [34] and mapped its analytics to the
alpha version of D3FEND. The repository primarily contains
detection analytics that consume endpoint telemetry. We also
analyzed the ATT&CK knowledge base and developed a way
to relate it to D3FEND, as discussed in Section IV-E.

3) Other Data Sources: We have also analyzed other data
sources. Some of these sources include academic papers, tech-
nical specifications, and publicly available product technical
documentation.

4) Key Findings: After reviewing these data sources, we
determined that these available intellectual property documents
could serve as the foundation for a cybersecurity countermea-
sure knowledge graph. We also were hopeful the resulting
knowledge graph would be coherent and useful to cybersecu-
rity architects. The D3FEND knowledge graph was built from
the patent corpus primarily due to its scope, specificity, and



availability. These data sources are published or made public
in various formats and venues. The cybersecurity community
has a diverse group of participants ranging from technicians
to academics. Intellectual property is developed by the whole
spectrum of participants. Example data sources are depicted
in Figure 2. The figure also illustrates the intellectual property
development network which produces cybersecurity counter-
measure technology. We also determined these datasets are
too large to analyze entirely manually. However, we started
with a manual analysis process so that we can better develop
automated means.

C. Countermeasure Analysis Process

Our initial approach included some preliminary efforts
to use natural language processing techniques to organize,
summarize, and classify the technologies claimed in the docu-
ments, primarily U.S. patent applications. We experimented
with unsupervised topic modeling and text summarization
algorithms. We determined these preliminary methods were
not sufficient to create a semantic representation that would be
useful to cybersecurity practitioners at the outset. Supervised
and semi-supervised machine-learning approaches were not
tried, as we did not yet have a countermeasure or artifact
classification system or a set of fixed terms and thus were
unable to provide labeled training data.

Our early efforts to use existing high-level models and work
top down to specific countermeasures, or to propose our own
high-level models absent the enumeration of countermeasure
instances, did not prove to be an effective approach to create
the desired framework of concepts and vocabulary. Our ex-
perience is that without anchoring the framework to specific
instances from the outset, establishing team consensus for the
vocabulary was difficult and was considered too subjective
and too biased toward individual contributor’s experience and
background. Given this experience, we focused on describing
specific technologies and built up a hierarchy of semantic
abstractions which are directly linked to the original references
to enhance the fidelity of the knowledge graph.

With a mindset towards automation, we began to manually
analyze, summarize, and formulate semantics that describe
the defensive techniques contained in the intellectual property
documents. We then recorded the analyses in our database,
creating a new labeled dataset. This resulted in a database with
a vocabulary of countermeasure techniques, and references
to source documents where the concepts are described. This
process relied on our subject matter expertise and was labor
intensive but necessary to develop an initial semantic model
of the countermeasure space. In addition, we plan to use these
analyses to research training algorithms to both refine the
initial model and expedite the development and recognition
of new countermeasure techniques.

The team reviewed over 500 cybersecurity patents selected
based on multiple criteria, and analyzed those with substantial
technical detail. We initially focused on “detection” oriented
vendors because the team had familiarity with the domain. We
chose vendors from IDC’s Worldwide Cybersecurity Products

Taxonomy, 2019 [19] and analyzed their patents. Some of
these technologies do more than just detect unauthorized
activity. We incorporated these additional techniques and cat-
egorized them in the D3FEND knowledge graph.

We approached the problem with a focus on countermeasure
activity. We drew on two related systems engineering ap-
proaches to describing and understanding system activity: ac-
tivity models [38] [39] and uses cases [40]. These approaches
helped us frame two related sets of questions to capture the
key aspects of the intellectual property when examining it in
terms of being a defensive technique. The first set aimed to
capture the core functional activity, and a second set captured
key user interaction aspects. Both sets are shown in Table I.
Given the volume of cybersecurity data and potential demands
for users to stay in or on the decision loops (i.e., monitor
and handle system alerts), we placed a particular emphasis on
scaling concerns, both in implementing the basic capability
and consequent user interactions.

TABLE I
TECHNIQUE ELICITATION QUESTIONS

How does the technology work? Activity model element
What are the data inputs? Activity Input
What are the data outputs? Activity Output
When does the analysis occur? Activity Control
What are the analytical algorithms? Activity Mechanism
How does it work at scale? Activity Mechanism
How can it be circumvented? Activity Mechanism
How do humans interact with the tech-
nology?

Activity model element

What must the human user do? User Responsibilities
How does this interaction scale? User-System Relationship

The team quickly realized that this was too time consuming,
and in many cases it was not possible to answer every question
for each intellectual property document. Additionally, many
technologies solved multiple problems, i.e., they contained
multiple D3FEND techniques. We then improved our process
with a new approach.

We noticed that data input types to the technologies were
a key factor in understanding how the technology works and
anchoring them to defensive techniques. Prior work by MITRE
focused analytic development around an object enumeration,
though the scope of the enumeration was focused on process
objects rather than the entire countermeasure space [18]. This
led us to create the D3FEND Digital Artifact Ontology to
define these data input types with a higher degree of specificity.
This concept is further discussed in section IV-E.

The knowledge and facts extracted during these analyses are
recorded in the D3FEND knowledge graph; where possible
we answered some of these initial questions for particular
technologies or D3FEND techniques. The current knowledge
graph is alpha level; we are adding features and information
necessary to be useful to a public audience. Our road-map
section explains our plan for developing a feature–complete
beta release.



Fig. 3. D3FEND Knowledge Graph User Interface: Tactics and Techniques Overview

IV. THE D3FEND MODEL

With our methodology we analyzed how defensive cyber-
security technologies work. Semantic patterns and structure
began to emerge once a critical mass of technologies had been
analyzed. We then organized and refined this structure as our
knowledge increased. “D3FEND” refers to all of D3FEND’s
components: the knowledge graph, knowledge graph user
interface, and the knowledge model.

A. Structural Overview

The D3FEND knowledge graph user interface, Figure 3,
renders defensive tactics and techniques in a tabular view
that also accounts for hierarchy. This view of the model is
represented as a directed, acyclic graph. Each element links
to more detailed information. The D3FEND knowledge model
has a few key top-level concepts, shown in Figure 4. The hi-
erarchy of classes is shown as gold arrows, while fundamental
relationships between these core concepts are depicted as blue
lines. This core is used to arrange the instances of concepts and
organize the relational assertions that make up the D3FEND
knowledge graph.

The D3FEND knowledge graph, currently being developed,
is a particular type of knowledge base. It connects the concep-

Fig. 4. D3FEND Core Knowledge Model

tual model (i.e. knowledge model) to the particular facts. It is
a graph structure that represents instances, their relationships,
and their types.



Fig. 5. Code (text) Segments and Process Memory Layout [37]

B. D3FEND Technique Semantics

A D3FEND technique is the central and most important
concept in the D3FEND knowledge model. They are curated
by D3FEND technique researchers. Cybersecurity technolo-
gies can be complex and may comprise multiple D3FEND
techniques. Semantically, a D3FEND technique is represented
as a concise phrase that captures significant information. This
is difficult to do because it is a high-dimensional optimization
problem.

Terms are selected for maximum information and minimal
confusion. Cybersecurity is a multi-disciplinary field; this
requires the technique researcher to be competent in not only
the primary cybersecurity domain but also adjacent domains
such as computer science and architecture, data analytics,
social sciences, and information technology architecture. The
D3FEND technique researcher must anticipate the potentially
numerous interpretations that people of different technical
backgrounds may have and then select optimal, accurate, and
precise terms. In general, the semantic context of computer
science and computer engineering domains takes precedence
over other domains.

C. Example Technique: Process Code Segment Verification

To better explain the core concepts used in D3FEND,
we will discuss an example D3FEND technique—process
code segment verification—that was discovered through our
development process. Here we will explain why those words
were chosen, what they mean, and what they and the resulting
knowledge graph entries enable the user to do.

Using our methodology, we identified and analyzed hun-
dreds of pieces of publicly disclosed intellectual property from
various cybersecurity vendors to extract D3FEND techniques.
We began to group and describe these techniques semantically.

In the case of process code segment verification, we deter-
mined several vendors were trying to solve the same technical
problem in very different ways. These technologies were
developed over two decades and deployed in radically dif-
ferent form-factors ranging from endpoint software agents to
software compiler technologies. Additionally, their analytical

approaches to verification were different. It was apparent
there may be advantages and disadvantages to the different
approaches. Despite the significant differences, these technolo-
gies were designed to solve the same problem: verify that the
code segments (also known as text segments—Figure 5) within
a running process were as expected.

To accurately make claims that a product implements a
given technique, we must understand the technique’s seman-
tics. We define the term process code segment to mean the
portions of memory assigned to a running process that contain
machine code for execution. These code segments are usually
loaded from disk when the application is executed to launch
the process. By specifying process code segment we explain
that this technique is not concerned with the application image
on disk but its state once it is loaded into the memory of a
launched process. Verification suggests that we are not only
concerned with the integrity of the code segment but that
a source of truth exists to verify against. This technique
name is rooted in the computer science domain; the term
code segment is used in many computer science textbooks
to describe the machine code portions of an executable file.
Additional research is required to objectively quantify the
quality of technique names.

Now that we have vocabulary for understanding a specific
D3FEND technique, we can ask the vendor key questions:
Under what circumstances does your technology read and
verify the process code segments? What is the source of truth
used in the verification of the code segments; is it on the
victim machine or a remote system? What happens if the code
segments are determined to be invalid? The answers to these
questions were interesting and illustrated the creativity and
cleverness of the cybersecurity technology developers.

This knowledge, intellectual property references, and anal-
ysis were recorded in our D3FEND knowledge graph under
the technique Process Code Segment Verification. With this
information organized and the intellectual property catalogued,
practitioners are now able not only to understand how the
technique works but also to consider which approach is more
suitable to their unique requirements.

Our example—process code segment verification—
illustrates positioning within two key dimensions of semantic
specificity, Figure 6. The level of specificity required for
describing functionality is dependent on usage context.
Our taxonomical approach accommodates various levels of
specificity. This enables the model to be easily tailored to a
particular use case. For example, an acquisition analyst may
require more generalization, while an engineer may require
more specificity.

D. D3FEND Tactics & Techniques

As we developed techniques in the D3FEND knowledge
graph, we identified sets of similar techniques that had com-
mon relationships. For example, some techniques primarily
analyze raw network traffic, while others focus purely on
process analysis. These techniques then naturally grouped
together further to organize more general types of techniques.



Fig. 6. Key Dimensions of Semantic Specificity

We distinguish the top-level techniques as base techniques,
from which all the other techniques are derived. For example,
the technique process code segment verification falls under the
base technique “Process Analysis.”

As we grouped the techniques, we identified another higher-
level concept, the defensive tactic. A defensive tactic is the
most general organizing class in the D3FEND knowledge
graph; see Figure 4. A defensive tactic is a maneuver in
response to some adversary action. These are action-oriented
and carefully selected terms to generalize multiple techniques.
Example defensive tactics we identified are Detect, Harden,
Deceive, Evict, and Isolate.

The tactics are represented in the top row, and the base
techniques are represented in the second row of Figure 3.
More specific defensive techniques appear in the columns
below the base techniques. Techniques belong to only one base
technique; in general, techniques form a hierarchy from the
most general to the most specific. For clarity, only two levels
of the defensive technique hierarchy are depicted in Figure 3.
Finally, the circled number in the individual techniques rep-
resents the number of source documents analyzed to develop
the technique.

An implicit notion of state is expressed in terms chosen
for tactics. A defender cannot Evict an adversary if he cannot
Detect the adversary, and he cannot Detect the adversary if
they are not there. Ideally, the defender would Harden his
environment before the adversary penetrates it.

Tactics are the maneuvers defenders take against an
adversary—“the what” of an action. The techniques are the
methods used to employ those actions—“the how” of imple-
menting the tactic. We say that these tactics are enabled by
the techniques.

E. Digital Objects, Digital Artifacts, and Technique Mapping

A key construct in D3FEND is the Digital Artifact Ontol-
ogy (DAO). This ontology specifies the concepts necessary
to classify and represent the digital objects of interest for
cybersecurity analysis. In the D3FEND knowledge model, a

Fig. 7. Offensive and Defensive Techniques Mapping Via Digital Artifacts

digital object becomes a digital artifact when a cyber actor,
either defensive or offensive, interacts with the object in any
way. To ensure a reasonable modeling scope, the D3FEND
knowledge model is only concerned with capturing knowledge
about digital artifacts relevant to known cyber actors and
known technologies—not all possible digital objects or their
representations.

Related work in the field developed vocabularies to list and
define common concepts used in cyber defense operations.
Some limitations of these vocabularies motivated the construc-
tion of the D3FEND DAO, as these vocabularies were often
syntactic rather than semantic, included vendor specific con-
cepts, and were enumerative versus taxonomical. Furthermore,
these vocabularies did not specify the relationships between
concepts. Finally, their purview was security operations and
incident response versus capability engineering. Therefore, it
was necessary to develop the D3FEND DAO as more abstract
semantic constructs, to unify the representation and enable
vendor-agnostic and inferential reasoning.

The term artifact was chosen in the archaeological sense
(e.g., some human put some artifact somewhere). If it does
not exist in some form within some computer or computer
network infrastructure, it is out of scope of the ontology. A
digital artifact need not be observable or accessible, but it must
possibly exist. An artifact may also comprise other artifacts,
thus enabling the representation of compound artifacts; see
Figure 8.

Digital artifacts also establish the conceptual scope of the
D3FEND knowledge model. For example, a strong password
policy is in scope because it directly affects an organization’s
technology configuration baseline, therefore it involves digital
artifacts. As a counter-example, many organizations invest in
employee cybersecurity awareness training programs. Training
programs do not directly interact with digital artifacts, there-
fore they are not in scope.

When an attacker types on his keyboard and performs open-
source internet research, he produces digital artifacts. When he
develops software exploits, sends malicious phishing links, or
operates a remotely controlled host in his target’s environment,
he creates digital artifacts on both his system, intermediate
systems, and target systems. Whether the defensive actors can
observe the attacker’s digital artifacts depends on their vantage
point and capabilities. Figure 7 illustrates these interactions
between offensive and defensive techniques in a simplified
way.



Fig. 8. Mapping via Inference Through the Digital Artifact Ontology

The cybersecurity analyst needs to know how cyber offense
is covered by cyber defense and vice versa. Therefore, we need
a reasonable mechanism to specify in detail the associations
between these two. Our approach focuses on using the digital
artifacts as the basis for conceptualizing and instantiating
the relations. Both offensive and defensive techniques are
associated with digital artifacts, where associated with is
a generic relationship type for more specific relationships
of produces, executes, analyzes, accesses, and installs. The
D3FEND knowledge model supports more specific relation-
ship types between offensive and defensive techniques as well,
for example, observes, detects, and counters. The key benefit
of this layered approach is that we can reason about the
relationships between offensive and defensive techniques by
analyzing how each technique is related to digital artifacts.
This allows us to infer these specific types of relationships
without needing to manually or directly relate offensive
techniques to defensive techniques (Figure 8). Provided we
accurately represent knowledge about offensive techniques,
defensive techniques, and digital artifacts—each in isolation—
we can accrete knowledge and derive additional knowledge
and insights through inference that otherwise would require
explicit enumeration.

Artifacts are defined in hierarchical specificity via classifi-
cation, and their subsumption is represented by gold lines in
Figure 8. For example, a Linux service daemon’s configuration
file is a service configuration file, which is a System Configura-
tion File, which is a Configuration File, which is a File—File
being the highest-order and least specific concept. This allows
us to ascertain the artifacts with which a particular defensive
technique is associated, with as much specificity as possible,
while still maintaining the ability to ask general questions
like, “which defensive techniques are associated with files?”
or more specific questions like “which defensive techniques
are associated with daemon configuration files?”

V. ROAD MAP

There are three roadmap focus areas for the D3FEND
project: improve and demonstrate the model utility for practi-
tioners, deepen and widen the model via analytics, and update
the model as the industry changes.

A. Model Utility

Semantic models are most useful when they are adopted;
they create a common language. We will use the model in
real-world use cases with cybersecurity architects and engi-
neers. Success of the model is practitioner adoption and a
positive consensus on its usefulness across multiple use cases.
Garnering adoption will be an iterative process where we
employ the model, qualitatively assess its usefulness, and make
improvements.

One assessment will use the model to differentiate and
analyze cybersecurity products. Large organizations receive
many inbound requests from technology vendors. Our hope
is that D3FEND clarifies the specific functionality a product
offers and reduces the amount of time spent analyzing vendor
marketing material. Another assessment will analyze a com-
puter network’s existing countermeasures and identify which
defensive techniques are present. We will start by asking a
cybersecurity architect what technologies they have related to
the base techniques, as a breadth-first analysis. We hope this
will identify any functionality gaps or overlap.

As we work through the use cases, we will track how much
of the model was used and how many new techniques were
added. Our hypothesis is that semantic reuse will increase over
time, eventually reducing the frequency of additions to the
model. We expect to follow-up this preliminary paper shortly
with one that provides greater detail on the application of
D3FEND to one or more specific capability analysis scenarios.

B. Model Depth, Breadth, and Technology Development

We must analyze more intellectual property to grow the
knowledge graph. Due to the size of the ever-growing dataset,



we must automate portions of the analysis process. This re-
quires a system of tools that can assist in extracting knowledge,
finding new topics, and tracking old ones. We will explore
using the system to enable machine-learning algorithms to
process data in the knowledge graph and develop models
to characterize the knowledge graph, and potentially new
instances of knowledge. By automatically tagging new data we
can expedite the discovery of new concepts and terminology in
the countermeasures space. Underpinning this, we will develop
a flexible knowledge graph architecture that ingests public
data, captures new knowledge, and supports sophisticated
storage and retrieval mechanisms.

C. Future Data Sources and the Intellectual Property Gener-
ation Network

Intellectual property can be collected from many sources.
We plan to estimate the potential relevance or value of the
intellectual property by creating a graph with vertices of
actors (people, companies, investors), edges of relationships
between them as seen in Figure 2, and weighting the edges
with business or influence metrics. We anticipate applying
the same methodology found in Section III that we used for
analyzing patents to additional technical corpora, including
academic papers, conference presentations, blog posts, and
engineering journals. These data sources will be reduced to
text-based representations, to enable accelerated analysis with
natural language processing techniques.

D. Updating the Model

As illustrated by our analysis of the patent application
submission rates, there is significant dynamism and activity in
the cybersecurity market. As new sources of public intellectual
property are collected, they must be archived, processed, and
analyzed. Our knowledge graph tools will discover new digital
artifacts and new defensive techniques. These discoveries will
be added to the D3FEND knowledge graph.

VI. CONCLUSION

In D3FEND, we have created a precise semantic model
of cybersecurity countermeasures that enables practitioners,
for the first time, to assess their defenses and fill gaps
with engineering-level knowledge of technical capabilities.
The alpha version of D3FEND (Figure 3) received positive
feedback from MITRE cybersecurity experts. Successful use
in countermeasure requirements analysis is required to further
validate it. We were satisfied with the semantic consistency
of it because it was easy to add new defensive techniques in
a repeatable fashion. These initial results show good promise,
and we believe our research has demonstrated the feasibility
of a countermeasure model built from real-world data sources.
The next phase of work will focus on fully populating it
with countermeasures and developing the tools necessary to
ensure it stays up to date. Automation is required to deal with
the rate of change in the domain and sustain the D3FEND
countermeasure knowledge graph over time.
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